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Damped finite-time singularity driven by noise
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We consider the combined influence of linear damping and noise on a dynamical finite-time singularity
model for a single degree of freedom. We find that the noise effectively resolves the finite-time singularity and
replaces it by a first-passage-time distribution or absorbing state distribution with a peak at the singularity and
a long time tail. The damping introduces a characteristic cross-over time. In the early time regime the prob-
ability distribution and first-passage-time distribution show a power law behavior with scaling exponent de-
pending on the ratio of the nonlinear coupling strength to the noise strength. In the late time regime the
behavior is controlled by the damping. The study might be of relevance in the context of hydrodynamics on a
nanometer scale, in material physics, and in biophysics.
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I. INTRODUCTION dx N
. _ . . G ot (m(O=4A681), (1.2
The influence of noise on the behavior of nonlinear dy- 2|x|
namical system is a recurrent theme in modern statistical o .
physics[1]. In a particular class of systems the nonlinearWhich was studied in detail in a recent papes.
character gives rise to finite-time singularities, that is, solu- The model is characterized by the coupling paramgter
tions, which cease to be valid beyond a particular finite timefdetermining the amplitude of the singular term, the index
span. One encounters finite-time singularities in stellar struct=0 characterizing the nature of the singularity, and the
ture, turbulent flow, and bacterial growf2—4]. The phe- Noise parameta_k_ deter_mlnlng the strength of the noise cor-
nomenon is also seen in Euler flows and in free-surface flowkelations. Specifically, in the case of a thermal environment
[5-8|. Finally, finite-time singularities are encountered in at temperaturé the noise strengthoT. -
modeling in econophysics, geophysics, and material physics N the absence of noise this model exhibits a finite-time
[9-13. singularity at a time,, where the variable vanishes with a
In the context of hydrodynamical flow on a nanoscalePower law behavior determined hy. When noise is added,
[14], where microscopic degrees of freedom come into play',fhe finite-time singularity event &t becomes a statistical
it is a relevant issue so as to how noise influences the hydrgvent and is conveniently characterized by a first-passage-
dynamical behavior near a finite-time singularity. Leavingtime distributionW(t) [16]. For vanishing noise we have
aside the issue of the detailed reduction of the hydrodynamiWV(t) = 6(t—to), restating the presence of the finite-time sin-
cal equations to a nanoscale and the influence of noise dgularity. In the presence of nois&y(t) develops a peak
this scale to further study, we assume in the present conte@Poutt=to, vanishes at short times, and acquires a long time
that a single variable or “reaction coordinate” effectively tail.
captures the interplay between the singularity and the noise. The model in Eq(1.2) has also been studied in the con-
Generally an equation of motion for a single degree oftéxt of persistence distributions related to the nonequilibrium
freedomx, describing a dynamical phenomenon with damp-critical dynamics of the two-dimensionxlY model[17] and
ing and imposed noise, is second order in time and has th@ the context of non-Gaussian Markov procesgt. Fi-

form nally, regularized for smal, the model enters in connection
with an analysis of long-range correlated stationary pro-
2y dx cesse$19]. o _
m— +T —=F(X)+ 7. (1.1) From our analysis in Ref15] it followed that for u=0,
dt? dt the logarithmic case, the distribution at long times is given

by the power law behavior

Here m is the mass]I' is the damping constanty is the
imposed noise, anB(x)=1/x1*# is a singular force gener- Wt ~t", a= §+L (1.3
ating the finite-time singularity. ' 2 2A° '
In the overdamped or high friction limit witH" large
we can neglect the inertial second order term thus, we obFor vanishing nonlinearity, i.eA=0, the finite-time singu-
tain, subject to a rescaling of time, the nonlinear Langevinarity is absent and the Langevin equatidn?) describes a
equation simple random walk of the reaction coordinate, yielding the
well-known exponenta=3/2 [16,20,21. In the nonlinear
case with a finite-time singularity the exponent attains a non-
*Electronic address: fogedby@phys.au.dk universal correction, depending on the ratio of the nonlinear
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strength to the strength of the noise; for a thermal environ-

ment the correction is proportional toTl/ In the generic
case foru>0, we found that the falloff is slower and that the

correction to the random walk result is given by a stretched

exponential

W(t)~t~ exd —A(t#CTH—1)], (1.9
whereA—N/Au for u—0.

Although the model system described by Eh2) can be
conceived to originate from the overdamped limit of an
equation of motion with a singular force term, it is a valid
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FIG. 1. In(a) we show the time evolution of the single degree of
freedomx. At times shorter than the cross-over time fiie variable
x falls off exponentially. At times beyond %the variablex reaches

issue whether additional damping, for example, a lineaj,e apsorbing state=0 at a finite timeto. In (b) we depict the free
damping term, can influence the character of the noise reSQhergyF (x) driving the equation. Fox=0, the free energy forms

lution of the finite-time singularity, in particular the long
time behavior of the first-passage-time distributiiit).

One way of providing a physical motivation is to consider
a first order equation of motion for the velocity with a
singular force depending on the velocity, yielding the finite-
time singularity

dv
ma+l“v=F(v)+ 7, (1.9

a confining harmonic well, fory=0 we have the absorbing state
case discussed in RdfL5]. In the general case the absorbing state
x=0 corresponds to the sink iA(x).

The paper is organized in the following manner. In Sec. Il
we introduce the finite-time singularity model with linear
damping and discuss its properties. In Sec. Il we review the
weak noise WKB phase space approach to the Fokker-Planck
equation, apply it to the finite-time singularity problem with
damping, and discuss the associated dynamical phase space

alternatively, we refer to the general time-dependenproblem and the long time properties of the distributions. In

Ginzburg-Landau schenj@2,23 in the context of dynami-

Sec. IV we derive an exact solution of the Fokker-Planck

cal critical phenomena and pattern formation exemplified byequation and present an expression for the first-passage-time

the Langevin equation
(1.6

Assuming a single degree of freedaps= X, a free energy of
the formF«=x?, and a “mode coupling termR yielding the

distribution. In Sec. V we present a summary and a conclu-
sion. In the present treatment we draw heavily on the analy-
sis in Ref.[15]. In Appendix A, aspects of the exact solution
are discussed in more detail; in Appendix B, we consider the
weak noise limit of the exact solution.

Il. MODEL

singular force, this equation also gives rise to a linear damp-

ing term.

In terms of a free energy or potentiglwe can express

In the present paper we consider the case of additiondfd. (1.7) in the form
linear damping and thus proceed to extend the analysis in

Ref. [15]. Here we shall only consider the logarithmic case

for u=0:

dx

A
az—yx—m"’ﬂy (mm)=A6(1). (1.7

In addition to the coupling parameterand the noise param-
eterA, this model is also characterized by the damping con

dx 1dF

G 2 ax T, (2.1)
whereF has the form
F=yx2+\In|x|. (2.2

The free energy has a logarithmic sink and drixe® the

stanty. Assuming for convenience a dimensionless variableabsorbing statex=0. For largex, the free energy has the

X, the coupling and the noise strengthsand A have the
dimension 1/time. The ratios/A and y/A are thus dimen-

form of a harmonic well potential confining the motion. In
Fig. 1 we have depicted the free energy in the various cases.

sionless parameters characterizing the behavior of the sys-

tem.

It follows from our analysis below that the damping con-
stant sets an inverse time scaley.1At intermediate time
scales foryt<1 the distribution exhibits the same power law
behavior as in the undamped case given by(Ec). At long
times for yt>1, the distribution falls off exponentially with
time constant HY(1+\/A), i.e.,

W(t)ocexd — y(1+N/A)t]. (1.8

A. The noiseless case

In the case of vanishing noise E@.1) is readily solved.
We obtain

12

X(t): [eZy(toft)_l]lIZ,

2y (2.3

with a finite-time singularity at
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in the present case subject to the boundary conditions
(24 P(x,0)=8(x—xo) andP(0t)=0. The Fokker-Planck equa-
tion has the form of a conservation laiP/dt+ dJ/dx=0
The initial value ofx is X, at timet=0. In the presence of defining the  probability current J=(1/2)(dF/dx)P
damping x initially falls off exponentially due to the confin- —(1/2)AdP/dx. For W(t) we obtain the expression
ing harmonic potential with a time constantylfor times
beyond 14, the nonlinear term takes over and driveso W(t)= E d_Fp+Aﬁ
zero at timety, i.e., x falls into the sink inF. In Fig. 1 we 2| dx 2
have shown the noiseless solutift).

1
t0:2_’y In

2y )
1+ TXO .

, (2.7)

x=0

to be used in our further analysis. Note that there is a sign
B. The noisy case error in Eq.(3.8) in Ref.[15].

Summarizing the discussion in RdfL5], the stochastic
aspects of the finite-time singularity in the presence of noise
are analyzed by focusing on the time-dependent probability In this section we apply a weak noise canonical phase
distribution P(x,t) and the derived first-passage-time distri- space approach to the damped finite-time singularity model
bution or absorbing state probability distributig¥i(t). The  and infer the general long time behavior. The treatment fol-
distribution P(x,t) is defined according t§21,24 P(y,t) lows closely the analysis in Rdf15].
=(8(y—x(t))) wherex is a stochastic solution of Eq2.1)
and(---) indicates an average over the noigelriving x. In A. The phase space method
the absence of noisB(y,t)=4[y—x(t)], wherex is the
deterministic solution given by E§2.3) and depicted in Fig.
1. At time t=0 the variablex evolves from the initial con-
dition xo implying the boundary conditiorP(x,0)= &(x
—Xp)-

At short timesx is close toxy, and the singular term and
the damping term are not yet operational. In this regime w
obtain ordinary random walk with the Gaussian distribution
P(x,t)=(27At) Y%exg —(x—xp)%/2At]. At a time scale,
given by 14, the damping driveg towards a stationary dis-
tribution, given byP«<exp(—F/A). However, at longer times
beyond the scale 3/ the barrier\/2x comes into play pre-
venting x from crossing the absorbing state=0. This is,
however, a random event which can occur at an arbitrar
time instant, i.e., the finite-time singularity, &t in the de- h
terministic case, is effectively resolved in the noisy case. FOLE‘2
not too large noise strength the distribution is peaked abo
the noiseless solution and vanishesxer 0, corresponding
to the absorbing state, implying the boundary condition

IIl. WEAK NOISE APPROACH

From a structural point of view the Fokker-Planck equa-
tion (2.6) has the form of an imaginary-time Schiinger
equationAgP/dt=HP, driven by the Hamiltonian or Liou-
villian H. The noise strengtiA plays the role of an effective
Planck constant an@® corresponds to the wave function.
é:)rawing on this parallel we have in recent work in the con-
text of the Kardar-Parisi-Zhang equation for a growing inter-
face elaborated on a weak noise nonperturbative WKB phase
space approach to a generic Fokker-Planck equation for ex-
tended systeni26—28. In the case of a single degree of
freedom this method amounts to the eikonal approximation
[21,25,29, see also Refd.30,31. For systems with many

egrees of freedom the method has, for example, been ex-
gounded in Ref[32], based on the functional formulation of
e Langevin equatiof33,34]. In the present formulation
6-—28 the emphasis is on the canonical phase space analy-
Sis and the use of dynamical system the[8¥,36.

The weak noise WKB approximation corresponds to the

ansatzP«exd —S/A]. The weight function or actiois then
P(0)=0. (2.5  to leading asymptotic order i satisfies a Hamilton-Jacobi
equationdS/at+H=0, which in turn implies grinciple of
In order to model a possible experimental situation the firstleast actionand Hamiltonian equations of moti¢87,38. In
passage-time distribution or absorbing state distributiorihe present context the Hamiltonian takes the form
W(t) is of more direct interedi24,25|.

Sinch(O,t) =_0 for all t d_ue to the gbsor_bing sta';e, the H= Ep( p— E—Zyx , (3.1)
probability thatx is not reachingc=0 in timet is thus given 2 X
by [4P(x,t)dx, implying that the probability—dW that x . ) , )
d}(;efso re(acr)1x=0 ir? )t/imge tis —d5V= —fgdy;dt(dP/dt), yielding the Hamilton equations of motion
yielding the absorbing state distributionW(t)= dx N
—[odx dP(x,t)/at [21]. In the absence of nois€(x,t) —=—yX—=—+p, 3.2
= [ x—x(t)] and W(t)=8(t—tp), in accordance with the dt 2X
finite-time singularity att=t,. For weak noiseN(t) peaks
aboutt, with vanishing tails for smalt and larget. dp 1 33
The distributionP(x,t) satisfies the Fokker-Planck equa- at P72 ;p. @3
tion [24,25
These equations replace the Langevin equdtlon with the
ﬁz Ei d_FP+Aﬁ (2.6) noise » represented by the momentym- dS/9x, conjugate
Jt 2 9x|dx ax |’ ' to x. Equationg3.2) and(3.3) determine orbits in a canonical
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ity in the x direction and the long time orbits approach the
zero-energy submanifolds which thus determine the
asymptotic properties as discussed in R&f].

Independent of whether the initial valug is greater or
smaller than the fixed point value*, the long time orbit
follows the invariantp=X\/x manifold towards the fixed
point. At the fixed point the orbit slows down and then
speeds up again as the orbit follows the other invariant mani-
fold p=2vyx towards the endpoint reached in timd. This
behavior is also depicted in Fig. 2.

This scenario allows a simple analysis of the long time
behavior of the distributio(x,t) and the first-passage-time

X x* Xo E=0 distribution W(t). Close to the invariant manifolds with en-
ergy E* = — y\, the action associated with an orbit from

FIG. 2. We show the topology of phase space. The bold linego x follows from Eq.(3.4) and is given by
indicate the zero energy submanifolds. The invariant heteroclinic
orbits p=2vyx andp=\/x, passing through the saddle point FP at
(x*,p*)=[(N2y)1/2,(2y\)¥?], have energy-y\. The arrows in-
dicate the direction of the flow. The long time orbit fraxg to x
passes close to the fixed point. The part of the orbit following thegr denoting the relevant manifolds by a subscript, see Fig. 2,
invariant manifoldp=\/x and entering in our long time estimate is
denoted by I; the part of the orbit close to the-2yx manifold is
denoted by 1. S=Ayt+AlIn

x* A\ X
S=—-E*t+ dx—+ | dx2yx, (3.6
Xo X x*

*

— Fy(F=x*2). (3.7
Xo,

phase space spanned kyand p. Since the system is con- ) ) o
served the orbits lie on the constant energy manigiven At long times we only have to consider the contribution from
by E=H. The action associated with an orbit frogy to x in the orbit leading up to the fixed point. Inserting the manifold
time t has the form condition p=A/x in the equation of motion(3.2) we thus

obtaindx/dt= — yx+ \/2x with solution

t dx
S(x0—>x,t)=f dt[pa—H} (3.9 X(t)2=x5e" 2"+ x*2(1—e~2M), (3.9
0
According to the ansatz the probability distribution is then C. Discussion
given by It follows from Eq. (3.8) that the dampingy sets an in-

verse time scale delimiting two kinds of characteristic behav-
ior. First, fort—o the orbit approaches the fixed poixit.
For yt>1 we have x?=x*?[1—exp(2y)] and x ap-
proaches the fixed point in an exponential fashion. On the
other hand, in the intermediate time region fdr<1 and for
yt>x3 and A\t>x3 we obtain x2=x35+ 2tyx* =x3+\t

The zero-energy manifolds delimiting the phase space or= .
bits follow from Eq. (3.1) and are given byp=0 andp By insertion in the expressiof8.7) for the action we then
=2yx+\/2x. The p=0 submanifold corresponds to the gptain in the late time regime foyt>1
noiseless or deterministic case discussed above. Fhe
=\/x+2yx submanifold corresponds to the noisy case. By
insertion in Eq.(3.3) we obtaindx/dt= yx+\/2x, i.e., the
motion on the noisy submanifold is time reversed of the
motion on the noiseless submanifold. The orbit structure iryielding the distribution and ensuing first-passage-time dis-
phase space is moreover controlled by the hyperbolic fixetribution
point at (x*,p*)=[(A/2y)*2 (2y\)Y?]. The heteroclinic
orbits passing through the fixed point are given oy \/x P(t)cW(t)cexp(—Nyt/A). (3.10
and p=2vyx, and the energy of the invariant manifold is
E*=—y\. In Fig. 2 we have depicted the phase space with-ikewise, we have in the intermediate time regime<1
the zero-energy manifolds, the fixed point, the heteroclinic
orbits, and some characteristic orbits.

The long time behavior of the distribution is determined
by an orbit fromx, to x traversed in timé. In the long time
limit this orbit must pass close to the hyperbolic fixed point.giving rise to the distribution and first-passage-time distribu-
Note that in the limity—0, the fixed point migrates to infin- tion

S(XO_)th)

A (3.9

P(x,t)= P(xoex,t)mex;{ -

B. Long time orbits

A — 2yt
S(H~Ayt— e 7, (3.9

S(t)~)\yt+%ln|t|, (3.11)
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P(t) o W(t)oc|t| ~(M24), (3.12 in the half spacex=0, and for the absorbing state distribu-
tion
These results hold in the weak noise limit. We note that at
long times,W(t) falls off exponentially with a time constant 2\12 5
given byA/\y. In the intermediate time regim®/(t) exhib- W(t)=(;> Xo€XP(—Xp/2At) (A1) ¥ (4.6)
its a power law behavior with exponent\/2A, independent
of 1/y defining the cross-over time. These results will also be
recovered from the exact solution discussed in the followinqS
sections.

ForA#0 andy=0 the particle cannot cross the barrier and

confined to either half space; this corresponds to the case
of a finite-time singularity subject to noise and an absorbing
state atx=0, and was discussed in detail in REL5]; for

IV. EXACT SOLUTION reference we give the obtained results below. Notextzaatd

In this section we return to the Fokker-Planck equation*o Should be interchanged in E(6.5) and that a factod is
(2.6) and present an exact solution. This solution is an extenMissing in Eq.(6.6) in Ref. [15],
sion of the solution presented in R¢L5] and the analysis

proceeds in much the same way. Details are discussed in X2+X§
Appendixes A and B. x(28)+(172) €XB T T A XXo
o | . P(X't)_x(x/zA)—(m) At L)+ ov2n)| 37 |-
Quantum particle in a harmonic potential
: ; ) (4.7
with centrifugal barrier
The Fokker-Planck equation has the form 2AXLTMA
0

W= S+ (V2h) ]

JP A %P ( )\)&P
X exp(— x3/2At)(2A1) ~ G2~V (4.9

N
— == —+|yX+=—=|—=+| y——|P. :
a2 gx2 X ox X (7 2X2)P 4.1

Eliminating the first order term by means of the gauge trans- |n the present case for+#0 andy#0 the problem corre-

formation sponds to the motion of a particle in a harmonic potential
5 with a centrifugal barrier ak=0. The spectrum is discrete
exp(h) = x| ~M2Aem /A, (4.2 and becomes continuous fer=0. As discussed in detail in
o Appendix A the problem is readily analyzed in terms of con-
we can express the equation in the form fluent hypergeometric functions, more specifically Laguerre
polynomials [39,40Q. Incorporating the initial condition
—A%[exq—h)Pk H[exp(—h)P], 4.3 P(x,0)= 6(x—Xg) and introducing the time scaled variables
- iy - X=X exp(—t/2), (4.9
where the Hamiltoniamd driving P is given by
1 32 a2 2A\1  Ay/[\ ’}/2 Xo=Xq eXp( + yt/2), (4.10
H=—§A2—2+§ 1+T - T(K_:L) +?X2.
24 X we find for P(x,t), see Appendix A,
(4.9
This Hamiltonian describes the motion of a unit mass quan- P(x t):?g\m)ﬂm) ye?? ex;{ _ Y(X+%5)
tum particle in one dimension in a harmonic potential subject T x(M28)=(1/2) A sinhyt 2A sinhyt
to a centrifugal barrier of strength\¢/8)(1+2A/)\) at the
origin; A plays the role of an effective Planck constant. Note Y XX
that in Eq.(6.4) in Ref.[15] the factorA/2 should read . XI(l/ZH(WA)(K sinhyt)’ (4.1

For A\=0 and y=0, both the barrier and the confining
potential are absent; the spectrumtbforms a band and the

. ! : nd correspondingly for the absorbing state distribution
particle can move over the whole axis. This case correspond% P gy g

to ordinary random walK21]. Incorporating the absorbing 1 N/A 2

state condition in Eq(2.5 by means of the method of mir- W(t)= 2AX exr{ _ YXo

rors we obtain the results presented in R&b, i.e., I'[(1/2)+(N/2A)] 2A sinhyt
(312)+ (\/2A)

X—Xg)? Y
P(x,t)=(2mAt) " ex " Xexmt)(zA sinh t) (4.12
2At Y
—exd — (X+X0)? 4.5 In Egs.(4.7) and (4.1)), |, is the Bessel function of imagi-
2At ’ ' nary argument] ,(z)=(—i)"J,(iz) [41].
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AW(1) Alog W(t)

Power, slope = - £ - 2~

Damped

oY

>t 1

-log y

FIG. 4. In this figure we sketch the behavior\&ft) in a log-
log plot. At intermediate times earlier thanylive have scaling
behavior with exponen{3/2)+(\/2A), corresponding to a constant
negative slope. In the long time limit the curve dips down indicating
the cross over to exponential behavior.

]
1/,Y > |Og t
FIG. 3. We sketch the first-passage-time distribut(t) as a
function oft. In the limitt—0, W(t) vanishes exponentially; about
the finite-time singularityV/(t) exhibits a maximum. At intermedi-
ate times foryt<1 the distribution exhibits a power law behavior
with scaling exponen(3/2)+(\/2A). In the long time limit foryt
>1 an exponential falloff with time constam{(1+\/A) character-

izes the behavior ofv(t). . : .
izes the behavior oW(t) In this paper we have extended the model discussed in

For consistency we have in Appendix B analyzed theRef. [15] to include a linear damping term. Not surprisingly,

weak noise limitA—0 of the exact solution in Eq4.11) and the damping changes the long time behavior of the physi-

. ) ctally relevant first-passage-time distribution. The finite-time
shown that the trajectory converges to the noiseless orbit. . . h . : S
given by Eq.(2.3). singularity occurring at timeé, in the noiseless case is still

effectively resolved by the noise, becoming a random event,
but the power law scaling behavior with scaling exponent
V. DISCUSSION AND CONCLUSION a=(3/2)+(N\/24) is limited to early times compared with the
cross-over time 1 set by the damping constant. In the long
time limit beyond 14 the damping gives rise to an exponen-
tial falloff and the scaling property ceases to be valid. To
the extent that the present simple model might apply to
physical phenomena where damping is always present, we
must conclude that an eventual power law scaling presum-
ably is confined to a time window determined by the size of
the damping.

Focusing on the expressidd.12 for the first-passage-
time distributionW(t) we note that the damping constant
defines two distinct time regimes, whereylgets the char-
acteristic crossover time. In the long time limit fpt>1 the
damping constant controls the behavior\W(t). From Eq.
(4.12 we infer

W(t)

2AX(1)+>\/A ¥\ 327+ (V2)
“TI(U2)+ (N2A)] (K)

Xexd — y(1+NA)t], (5.2

ACKNOWLEDGMENT

Discussions with A. Svane are gratefully acknowledged.

i.e., W(t) falls off exponentially with an effective damping

constanty{1+(N\/A)] renormalized by the ratia/A of the APPENDIX A: EXACT SOLUTION

nonlinear strength to the noise strength. We note that for OF THE FOKKER-PLANCK EQUATION

A—0 the result is in accordance with the weak noise phase |n this appendix we discuss the exact solution of the

space derivation in Sec. Ill. In the intermediate time regimerokker-Planck equation in more detail. Denoting the normal-

for yt<1 the damping constant drops out and we obtain jzed eigenfunction oH in Eq. (4.4 and the associated ei-
genvalues by¥,, andA2E, /2, respectively, we obtain, incor-

AxgTMA ) 1 |\ B2+0v24) porating the initial conditionP(x,0)= 8(x—xX,) and the
W(t)= TL(L2)+(N2A)] exp(—Xo/2A0)| 537 * gauge transformation, the following expression for the distri-
(5.2 bution:

For 2At>x3, the distributionW(t) exhibits a power law
behavior with the same expondi®/2)+(\/2A) as in the un-
damped case foy=0. For weak noise this result is again in
agreement with the estimate in Sec. Ill. XW (X)W (Xo)- (A1)

In the short time limit,W(t) vanishes exponentially and
shows a maximum about the finite-time singularity. In Fig. 3By means of the transformation¥ (x)=x""?*exp
we have depicted the first-passage-time distribution as a yx?2AG(yx?/A), it follows that G is a solution of the
function oft. In Fig. 4 we illustrate the behavior 8(t) in degenerate hypergeometric equafidf,4q. For the discrete
a log-log representation. spectrum we choose the polynomial form and further analy-

P(x,t)= >, e AEnti2g- y(x2_x§)/2A(X/XO) N2
n
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sis shows that the eigenfunctiols, are given in terms of (z/2)”
the Laguerre polynomials? [39,40. For the normalized |V(Z):m COSKX cos6)sir’” 6d .
eigenfunctions we thus obtain (B1)
(3/2)+(M/24) 12
T =2 Y T'(n+1) Inserting Eq.(B1) in Eq. (4.1 we have
. A I'[(3/2)+ (N/2A)+n]
(1/2)+ (M /24)
s XL+ M2A g PERA (D (M23) (2N ). (A2) P(X.t) = 1 1 e"m( ¥Xo
A Y am2% A X sinhyt

with discrete eigenvalue spectrum 5
@~ (M48) (RZ+%0)/ (RXgsinhu) g y1/2

E,=4ny/A+2(y/A)(1+\/A). (A3)
sinég
Inserting Eqs(A2) and(A3) in Eq. (A1) and using the iden- f desmhu (A sin 6+ (LiZ)cosbisinhu]
tity [39,40
+ e()\/A)[In sin 07(1/2)cosalsinhu]) (BZ)
2 r(n+ +1)Z "La(x)La(y) where u is defined by sinbi=\ sinhyt/(295%), X
" =x exp(t/2), and Xo=Xpexp(—1/2). Setting f.(6)
(xyz) " _, =In sin = (1/2) cosdlsinhu the saddle points for small are
_YD T ko) V21—
1-z © l[2(xy2™(1=2)], (A4) given by co9).==*exp(—u) for x>0 and co¥.=Fexp)

for x<<0. Forx>0 we havef, (0,)=f_(6_)=(1/2)[In(1
we finally obtain Eq.(4.11) for P(x,t) and by the same —e=2teYsinhu] andf’ (6,)=f"(6_)=—cothu, and we
We note that forn—0, using |,(x)=(2/mx)%sinhx

[39], the expressior4.1]1) takes the form o 12112 ﬂg(l_e—zu) (112)+ (N/2A)
y 172 Y (X_Xoe—yt)Z (X’t)_ 4 A 3’(0 )\Slnhyt
Pxt)=| ——————| |exg ~————— )
mA(l—e 2" A g2 o (M24) (32+%3 — 2XXgcoshu) KXgsinhu

. B3
8 (sinhu coshu)/? (83)
, (A5)

v (X+x0e "2
A 1_e727t ~2 |~ —~ . .
For A—0 the factorX +x0 2ZXXycoshu in the exponent in
i.e., the mirror case of the noise driven overdamped oscillaEd- (B3) locks onto zero, thus settirigf+%5— 2XXocoshu
tor. Note that forA—0, the variablex lies on the noiseless =0 and inserting sinb=Xx sinh(t)/2yXX, we ’obtain
orbit x— Xgexp(—yt) and P vanishes foix=0.
0XP(= ) +X2—[(2X%0)%+ (N sinhyt/9)2]¥2=0.  (B4)
APPENDIX B: SMALL NOISE LIMIT-SADDLE

POINT ANALYSIS Finally, settingk=x exp(yt/2) andX,= xoexp(—y/2) we ob-

tain after some reduction
In this appendix we perform for completion, a weak noise
saddle point analysis of the exact expression in @dqll X(t) = Vx5exp —2yt) — (M2y)[ 1—exp —2yt)],
along the same lines as in RéL5]. This analysis requires (B5)
that we consider both large order and argument of the Bessel
function | (x). This is easily done by Laplace’s method us- which by simple |nspect|on is equivalent to BE@.3). For
ing a convenient spectral representatign, 40 v—0 we havex= \/xo2 ; for \—0, x=x,e "
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