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Damped finite-time singularity driven by noise

Hans C. Fogedby*
Institute of Physics and Astronomy, University of Aarhus, DK-8000 Aarhus C, Denmark

and NORDITA, Blegdamsvej 17, DK-2100 Copenhagen O” , Denmark
~Received 3 June 2003; published 24 November 2003!

We consider the combined influence of linear damping and noise on a dynamical finite-time singularity
model for a single degree of freedom. We find that the noise effectively resolves the finite-time singularity and
replaces it by a first-passage-time distribution or absorbing state distribution with a peak at the singularity and
a long time tail. The damping introduces a characteristic cross-over time. In the early time regime the prob-
ability distribution and first-passage-time distribution show a power law behavior with scaling exponent de-
pending on the ratio of the nonlinear coupling strength to the noise strength. In the late time regime the
behavior is controlled by the damping. The study might be of relevance in the context of hydrodynamics on a
nanometer scale, in material physics, and in biophysics.
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I. INTRODUCTION

The influence of noise on the behavior of nonlinear d
namical system is a recurrent theme in modern statist
physics @1#. In a particular class of systems the nonline
character gives rise to finite-time singularities, that is, so
tions, which cease to be valid beyond a particular finite ti
span. One encounters finite-time singularities in stellar str
ture, turbulent flow, and bacterial growth@2–4#. The phe-
nomenon is also seen in Euler flows and in free-surface fl
@5–8#. Finally, finite-time singularities are encountered
modeling in econophysics, geophysics, and material phy
@9–13#.

In the context of hydrodynamical flow on a nanosca
@14#, where microscopic degrees of freedom come into p
it is a relevant issue so as to how noise influences the hy
dynamical behavior near a finite-time singularity. Leavi
aside the issue of the detailed reduction of the hydrodyna
cal equations to a nanoscale and the influence of noise
this scale to further study, we assume in the present con
that a single variable or ‘‘reaction coordinate’’ effective
captures the interplay between the singularity and the no

Generally an equation of motion for a single degree
freedomx, describing a dynamical phenomenon with dam
ing and imposed noise, is second order in time and has
form

m
d2x

dt2
1G

dx

dt
5F~x!1h. ~1.1!

Here m is the mass,G is the damping constant,h is the
imposed noise, andF(x)}1/x11m is a singular force gener
ating the finite-time singularity.

In the overdamped or high friction limit withG large
we can neglect the inertial second order term thus, we
tain, subject to a rescaling of time, the nonlinear Lange
equation

*Electronic address: fogedby@phys.au.dk
1063-651X/2003/68~5!/051105~8!/$20.00 68 0511
-
al
r
-
e
c-

s

cs

y,
o-

i-
on
xt

e.
f
-
he

b-
n

dx

dt
52

l

2uxu11m
1h, ^hh&~ t !5Dd~ t !, ~1.2!

which was studied in detail in a recent paper@15#.
The model is characterized by the coupling parametel

determining the amplitude of the singular term, the ind
m>0 characterizing the nature of the singularity, and t
noise parameterD determining the strength of the noise co
relations. Specifically, in the case of a thermal environm
at temperatureT the noise strengthD}T.

In the absence of noise this model exhibits a finite-tim
singularity at a timet0, where the variablex vanishes with a
power law behavior determined bym. When noise is added
the finite-time singularity event att0 becomes a statistica
event and is conveniently characterized by a first-passa
time distributionW(t) @16#. For vanishing noise we hav
W(t)5d(t2t0), restating the presence of the finite-time si
gularity. In the presence of noise,W(t) develops a peak
aboutt5t0, vanishes at short times, and acquires a long ti
tail.

The model in Eq.~1.2! has also been studied in the co
text of persistence distributions related to the nonequilibri
critical dynamics of the two-dimensionalXY model@17# and
in the context of non-Gaussian Markov processes@18#. Fi-
nally, regularized for smallx, the model enters in connectio
with an analysis of long-range correlated stationary p
cesses@19#.

From our analysis in Ref.@15# it followed that form50,
the logarithmic case, the distribution at long times is giv
by the power law behavior

W~ t !;t2a, a5
3

2
1

l

2D
. ~1.3!

For vanishing nonlinearity, i.e.,l50, the finite-time singu-
larity is absent and the Langevin equation~1.2! describes a
simple random walk of the reaction coordinate, yielding t
well-known exponenta53/2 @16,20,21#. In the nonlinear
case with a finite-time singularity the exponent attains a n
universal correction, depending on the ratio of the nonlin
©2003 The American Physical Society05-1
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strength to the strength of the noise; for a thermal envir
ment the correction is proportional to 1/T. In the generic
case form.0, we found that the falloff is slower and that th
correction to the random walk result is given by a stretch
exponential

W~ t !;t23/2exp@2A~ t2m/(21m)21!#, ~1.4!

whereA→l/Dm for m→0.
Although the model system described by Eq.~1.2! can be

conceived to originate from the overdamped limit of
equation of motion with a singular force term, it is a val
issue whether additional damping, for example, a lin
damping term, can influence the character of the noise r
lution of the finite-time singularity, in particular the lon
time behavior of the first-passage-time distributionW(t).

One way of providing a physical motivation is to consid
a first order equation of motion for the velocityv with a
singular force depending on the velocity, yielding the fini
time singularity

m
dv
dt

1Gv5F~v !1h, ~1.5!

alternatively, we refer to the general time-depend
Ginzburg-Landau scheme@22,23# in the context of dynami-
cal critical phenomena and pattern formation exemplified
the Langevin equation

]f

]t
52G

dF

df
1R~f!1h. ~1.6!

Assuming a single degree of freedomf5x, a free energy of
the formF}x2, and a ‘‘mode coupling term’’R yielding the
singular force, this equation also gives rise to a linear dam
ing term.

In the present paper we consider the case of additio
linear damping and thus proceed to extend the analysi
Ref. @15#. Here we shall only consider the logarithmic ca
for m50:

dx

dt
52gx2

l

2uxu
1h, ^hh&5Dd~ t !. ~1.7!

In addition to the coupling parameterl and the noise param
eterD, this model is also characterized by the damping c
stantg. Assuming for convenience a dimensionless varia
x, the coupling and the noise strengthsl and D have the
dimension 1/time. The ratiosl/D and g/D are thus dimen-
sionless parameters characterizing the behavior of the
tem.

It follows from our analysis below that the damping co
stant sets an inverse time scale 1/g. At intermediate time
scales forgt!1 the distribution exhibits the same power la
behavior as in the undamped case given by Eq.~1.3!. At long
times forgt@1, the distribution falls off exponentially with
time constant 1/g~11l/D!, i.e.,

W~ t !}exp@2g~11l/D!t#. ~1.8!
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The paper is organized in the following manner. In Sec
we introduce the finite-time singularity model with linea
damping and discuss its properties. In Sec. III we review
weak noise WKB phase space approach to the Fokker-Pla
equation, apply it to the finite-time singularity problem wi
damping, and discuss the associated dynamical phase s
problem and the long time properties of the distributions.
Sec. IV we derive an exact solution of the Fokker-Plan
equation and present an expression for the first-passage
distribution. In Sec. V we present a summary and a conc
sion. In the present treatment we draw heavily on the an
sis in Ref.@15#. In Appendix A, aspects of the exact solutio
are discussed in more detail; in Appendix B, we consider
weak noise limit of the exact solution.

II. MODEL

In terms of a free energy or potentialF we can express
Eq. ~1.7! in the form

dx

dt
52

1

2

dF

dx
1h~ t !, ~2.1!

whereF has the form

F5gx21l lnuxu. ~2.2!

The free energy has a logarithmic sink and drivesx to the
absorbing statex50. For largex, the free energy has th
form of a harmonic well potential confining the motion. I
Fig. 1 we have depicted the free energy in the various ca

A. The noiseless case

In the case of vanishing noise Eq.~2.1! is readily solved.
We obtain

x~ t !5F l

2gG1/2

@e2g(t02t)21#1/2, ~2.3!

with a finite-time singularity at

FIG. 1. In~a! we show the time evolution of the single degree
freedomx. At times shorter than the cross-over time 1/g the variable
x falls off exponentially. At times beyond 1/g the variablex reaches
the absorbing statex50 at a finite timet0. In ~b! we depict the free
energyF(x) driving the equation. Forl50, the free energy forms
a confining harmonic well, forg50 we have the absorbing stat
case discussed in Ref.@15#. In the general case the absorbing sta
x50 corresponds to the sink inF(x).
5-2
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t05
1

2g
lnU11

2g

l
x0

2U. ~2.4!

The initial value ofx is x0 at time t50. In the presence o
damping,x initially falls off exponentially due to the confin
ing harmonic potential with a time constant 1/g. For times
beyond 1/g, the nonlinear term takes over and drivesx to
zero at timet0, i.e., x falls into the sink inF. In Fig. 1 we
have shown the noiseless solutionx(t).

B. The noisy case

Summarizing the discussion in Ref.@15#, the stochastic
aspects of the finite-time singularity in the presence of no
are analyzed by focusing on the time-dependent probab
distribution P(x,t) and the derived first-passage-time dist
bution or absorbing state probability distributionW(t). The
distribution P(x,t) is defined according to@21,24# P(y,t)
5^d(y2x(t))& wherex is a stochastic solution of Eq.~2.1!
and ^¯& indicates an average over the noiseh driving x. In
the absence of noiseP(y,t)5d@y2x(t)#, where x is the
deterministic solution given by Eq.~2.3! and depicted in Fig.
1. At time t50 the variablex evolves from the initial con-
dition x0 implying the boundary conditionP(x,0)5d(x
2x0).

At short timesx is close tox0, and the singular term an
the damping term are not yet operational. In this regime
obtain ordinary random walk with the Gaussian distributi
P(x,t)5(2pDt)21/2exp@2(x2x0)

2/2Dt#. At a time scale,
given by 1/g, the damping drivesx towards a stationary dis
tribution, given byP}exp(2F/D). However, at longer times
beyond the scale 1/g, the barrierl/2x comes into play pre-
venting x from crossing the absorbing statex50. This is,
however, a random event which can occur at an arbitr
time instant, i.e., the finite-time singularity, att0 in the de-
terministic case, is effectively resolved in the noisy case.
not too large noise strength the distribution is peaked ab
the noiseless solution and vanishes forx→0, corresponding
to the absorbing state, implying the boundary condition

P~0,t !50. ~2.5!

In order to model a possible experimental situation the fi
passage-time distribution or absorbing state distribut
W(t) is of more direct interest@24,25#.

SinceP(0,t)50 for all t due to the absorbing state, th
probability thatx is not reachingx50 in time t is thus given
by *0

`P(x,t)dx, implying that the probability2dW that x
does reachx50 in time t is 2dW52*0

`dxdt(dP/dt),
yielding the absorbing state distributionW(t)5
2*0

`dx ]P(x,t)/]t @21#. In the absence of noiseP(x,t)
5d@x2x(t)# and W(t)5d(t2t0), in accordance with the
finite-time singularity att5t0. For weak noiseW(t) peaks
aboutt0 with vanishing tails for smallt and larget.

The distributionP(x,t) satisfies the Fokker-Planck equ
tion @24,25#

]P

]t
5

1

2

]

]x FdF

dx
P1D

]P

]x G , ~2.6!
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in the present case subject to the boundary conditi
P(x,0)5d(x2x0) andP(0,t)50. The Fokker-Planck equa
tion has the form of a conservation law]P/]t1]J/]x50
defining the probability current J5(1/2)(dF/dx)P
2(1/2)D]P/]x. For W(t) we obtain the expression

W~ t !5
1

2 FdF

dx
P1D

]P

]x G
x50

, ~2.7!

to be used in our further analysis. Note that there is a s
error in Eq.~3.8! in Ref. @15#.

III. WEAK NOISE APPROACH

In this section we apply a weak noise canonical ph
space approach to the damped finite-time singularity mo
and infer the general long time behavior. The treatment
lows closely the analysis in Ref.@15#.

A. The phase space method

From a structural point of view the Fokker-Planck equ
tion ~2.6! has the form of an imaginary-time Schro¨dinger
equationD]P/]t5HP, driven by the Hamiltonian or Liou-
villian H. The noise strengthD plays the role of an effective
Planck constant andP corresponds to the wave function
Drawing on this parallel we have in recent work in the co
text of the Kardar-Parisi-Zhang equation for a growing int
face elaborated on a weak noise nonperturbative WKB ph
space approach to a generic Fokker-Planck equation for
tended system@26–28#. In the case of a single degree o
freedom this method amounts to the eikonal approximat
@21,25,29#, see also Refs.@30,31#. For systems with many
degrees of freedom the method has, for example, been
pounded in Ref.@32#, based on the functional formulation o
the Langevin equation@33,34#. In the present formulation
@26–28# the emphasis is on the canonical phase space an
sis and the use of dynamical system theory@35,36#.

The weak noise WKB approximation corresponds to
ansatzP}exp@2S/D#. The weight function or actionS then
to leading asymptotic order inD satisfies a Hamilton-Jacob
equation]S/]t1H50, which in turn implies aprinciple of
least actionand Hamiltonian equations of motion@37,38#. In
the present context the Hamiltonian takes the form

H5
1

2
pS p2

l

x
22gxD , ~3.1!

yielding the Hamilton equations of motion

dx

dt
52gx2

l

2x
1p, ~3.2!

dp

dt
5gp2

1

2

l

x2
p. ~3.3!

These equations replace the Langevin equation~1.7! with the
noiseh represented by the momentump5]S/]x, conjugate
to x. Equations~3.2! and~3.3! determine orbits in a canonica
5-3
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HANS C. FOGEDBY PHYSICAL REVIEW E68, 051105 ~2003!
phase space spanned byx and p. Since the system is con
served the orbits lie on the constant energy manifold~s! given
by E5H. The action associated with an orbit fromx0 to x in
time t has the form

S~x0→x,t !5E
0

t

dtFp
dx

dt
2HG . ~3.4!

According to the ansatz the probability distribution is th
given by

P~x,t !5P~x0→x,t !}expF2
S~x0→x,t !

D G . ~3.5!

B. Long time orbits

The zero-energy manifolds delimiting the phase space
bits follow from Eq. ~3.1! and are given byp50 and p
52gx1l/2x. The p50 submanifold corresponds to th
noiseless or deterministic case discussed above. Thp
5l/x12gx submanifold corresponds to the noisy case.
insertion in Eq.~3.3! we obtaindx/dt5gx1l/2x, i.e., the
motion on the noisy submanifold is time reversed of t
motion on the noiseless submanifold. The orbit structure
phase space is moreover controlled by the hyperbolic fi
point at (x* ,p* )5@(l/2g)1/2,(2gl)1/2#. The heteroclinic
orbits passing through the fixed point are given byp5l/x
and p52gx, and the energy of the invariant manifold
E* 52gl. In Fig. 2 we have depicted the phase space w
the zero-energy manifolds, the fixed point, the heterocli
orbits, and some characteristic orbits.

The long time behavior of the distribution is determin
by an orbit fromx0 to x traversed in timet. In the long time
limit this orbit must pass close to the hyperbolic fixed poi
Note that in the limitg→0, the fixed point migrates to infin

FIG. 2. We show the topology of phase space. The bold li
indicate the zero energy submanifolds. The invariant heterocl
orbits p52gx andp5l/x, passing through the saddle point FP
(x* ,p* )5@(l/2g)1/2,(2gl)1/2#, have energy2gl. The arrows in-
dicate the direction of the flow. The long time orbit fromx0 to x
passes close to the fixed point. The part of the orbit following
invariant manifoldp5l/x and entering in our long time estimate
denoted by I; the part of the orbit close to thep52gx manifold is
denoted by II.
05110
r-

y

n
d

h
c

.

ity in the x direction and the long time orbits approach t
zero-energy submanifolds which thus determine
asymptotic properties as discussed in Ref.@15#.

Independent of whether the initial valuex0 is greater or
smaller than the fixed point valuex* , the long time orbit
follows the invariantp5l/x manifold towards the fixed
point. At the fixed point the orbit slows down and the
speeds up again as the orbit follows the other invariant m
fold p52gx towards the endpointx reached in timet. This
behavior is also depicted in Fig. 2.

This scenario allows a simple analysis of the long tim
behavior of the distributionP(x,t) and the first-passage-tim
distributionW(t). Close to the invariant manifolds with en
ergy E* 52gl, the action associated with an orbit fromx0
to x follows from Eq.~3.4! and is given by

S52E* t1E
x0

x*
dx

l

x
1E

x*

x

dx2gx, ~3.6!

or, denoting the relevant manifolds by a subscript, see Fig

S5lgt1l lnUx*

x0
U

I

1g~x22x* 2! II . ~3.7!

At long times we only have to consider the contribution fro
the orbit leading up to the fixed point. Inserting the manifo
condition p5l/x in the equation of motion~3.2! we thus
obtaindx/dt52gx1l/2x with solution

x~ t !25x0
2e22gt1x* 2~12e22gt!. ~3.8!

C. Discussion

It follows from Eq. ~3.8! that the dampingg sets an in-
verse time scale delimiting two kinds of characteristic beh
ior. First, for t→` the orbit approaches the fixed pointx* .
For gt@1 we have x25x* 2@12exp(22gt)# and x ap-
proaches the fixed point in an exponential fashion. On
other hand, in the intermediate time region forgt!1 and for
gt@x0

2 and lt@x0
2 we obtain x25x0

212tgx* 5x0
21lt

;lt.
By insertion in the expression~3.7! for the action we then

obtain in the late time regime forgt@1

S~ t !;lgt2
l

2
e22gt, ~3.9!

yielding the distribution and ensuing first-passage-time d
tribution

P~ t !}W~ t !}exp~2lgt/D!. ~3.10!

Likewise, we have in the intermediate time regimegt!1

S~ t !;lgt1
l

2
lnutu, ~3.11!

giving rise to the distribution and first-passage-time distrib
tion

s
ic

e
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DAMPED FINITE-TIME SINGULARITY DRIVEN BY NOISE PHYSICAL REVIEW E68, 051105 ~2003!
P~ t !}W~ t !}utu2(l/2D). ~3.12!

These results hold in the weak noise limit. We note tha
long times,W(t) falls off exponentially with a time constan
given byD/lg. In the intermediate time regime,W(t) exhib-
its a power law behavior with exponent2l/2D, independent
of 1/g defining the cross-over time. These results will also
recovered from the exact solution discussed in the follow
sections.

IV. EXACT SOLUTION

In this section we return to the Fokker-Planck equat
~2.6! and present an exact solution. This solution is an ext
sion of the solution presented in Ref.@15# and the analysis
proceeds in much the same way. Details are discusse
Appendixes A and B.

Quantum particle in a harmonic potential
with centrifugal barrier

The Fokker-Planck equation has the form

]P

]t
5

D

2

]2P

]x2
1S gx1

l

2xD ]P

]x
1S g2

l

2x2D P. ~4.1!

Eliminating the first order term by means of the gauge tra
formation

exp~h!5uxu2l/2De2gx2/2D, ~4.2!

we can express the equation in the form

2D
]

]t
@exp~2h!P#5H@exp~2h!P#, ~4.3!

where the HamiltonianH driving P is given by

H52
1

2
D2

]2

]x2
1

l2

8 S 11
2D

l D 1

x2
1

Dg

2 S l

D
21D1

g2

2
x2.

~4.4!

This Hamiltonian describes the motion of a unit mass qu
tum particle in one dimension in a harmonic potential subj
to a centrifugal barrier of strength (l2/8)(112D/l) at the
origin; D plays the role of an effective Planck constant. No
that in Eq.~6.4! in Ref. @15# the factorD/2 should read 1/D.

For l50 and g50, both the barrier and the confinin
potential are absent; the spectrum ofH forms a band and the
particle can move over the whole axis. This case correspo
to ordinary random walk@21#. Incorporating the absorbing
state condition in Eq.~2.5! by means of the method of mir
rors we obtain the results presented in Ref.@15#, i.e.,

P~x,t !5~2pDt !21/2S expF2
~x2x0!2

2Dt G
2expF2

~x1x0!2

2Dt G D , ~4.5!
05110
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in the half spacex>0, and for the absorbing state distribu
tion

W~ t !5S 2

p D 1/2

x0exp~2x0
2/2Dt !~Dt !23/2. ~4.6!

For lÞ0 andg50 the particle cannot cross the barrier a
is confined to either half space; this corresponds to the c
of a finite-time singularity subject to noise and an absorb
state atx50, and was discussed in detail in Ref.@15#; for
reference we give the obtained results below. Note thatx and
x0 should be interchanged in Eq.~6.5! and that a factorD is
missing in Eq.~6.6! in Ref. @15#,

P~x,t !5
x0

(l/2D)1(1/2)

x(l/2D)2(1/2)

expS 2
x21x0

2

2Dt D
Dt

I (1/2)1(l/2D)S xx0

Dt D .

~4.7!

W~ t !5
2Dx0

11l/D

G@~1/2!1~l/2D!#

3exp~2x0
2/2Dt !~2Dt !2(3/2)2(l/2D). ~4.8!

In the present case forlÞ0 andgÞ0 the problem corre-
sponds to the motion of a particle in a harmonic poten
with a centrifugal barrier atx50. The spectrum is discret
and becomes continuous forg50. As discussed in detail in
Appendix A the problem is readily analyzed in terms of co
fluent hypergeometric functions, more specifically Lague
polynomials @39,40#. Incorporating the initial condition
P(x,0)5d(x2x0) and introducing the time scaled variable

x5 x̃ exp~2gt/2!, ~4.9!

x05 x̃0 exp~1gt/2!, ~4.10!

we find for P(x,t), see Appendix A,

P~x,t !5
x̃0

(l/2D)1(1/2)

x̃(l/2D)2(1/2)

gegt/2

D sinhgt
expF2

g~ x̃21 x̃0
2!

2D sinhgt G
3I (1/2)1(l/2D)S g

D

x̃x̃0

sinhgt D , ~4.11!

and correspondingly for the absorbing state distribution

W~ t !5
2D x̃0

11l/D

G@~1/2!1~l/2D!#
expF2

g x̃0
2

2D sinhgtG
3exp~gt !S g

2D sinhgt D
(3/2)1(l/2D)

. ~4.12!

In Eqs. ~4.7! and ~4.11!, I n is the Bessel function of imagi
nary argument,I n(z)5(2 i )nJn( iz) @41#.
5-5
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For consistency we have in Appendix B analyzed
weak noise limitD→0 of the exact solution in Eq.~4.11! and
shown that the trajectory converges to the noiseless o
given by Eq.~2.3!.

V. DISCUSSION AND CONCLUSION

Focusing on the expression~4.12! for the first-passage
time distributionW(t) we note that the damping constantg
defines two distinct time regimes, where 1/g sets the char-
acteristic crossover time. In the long time limit forgt@1 the
damping constant controls the behavior ofW(t). From Eq.
~4.12! we infer

W~ t !}
2Dx0

11l/D

G@~1/2!1~l/2D!# S g

D D (3/2)1(l/2D)

3exp@2g~11l/D!t#, ~5.1!

i.e., W(t) falls off exponentially with an effective dampin
constantg@11~l/D!# renormalized by the ratiol/D of the
nonlinear strength to the noise strength. We note that
D→0 the result is in accordance with the weak noise ph
space derivation in Sec. III. In the intermediate time regi
for gt!1 the damping constantg drops out and we obtain

W~ t !}
2Dx0

11l/D

G@~1/2!1~l/2D!#
exp~2x0

2/2Dt !S 1

2Dt D
(3/2)1(l/2D)

.

~5.2!

For 2Dt@x0
2, the distributionW(t) exhibits a power law

behavior with the same exponent~3/2!1~l/2D! as in the un-
damped case forg50. For weak noise this result is again
agreement with the estimate in Sec. III.

In the short time limit,W(t) vanishes exponentially an
shows a maximum about the finite-time singularity. In Fig
we have depicted the first-passage-time distribution a
function of t. In Fig. 4 we illustrate the behavior ofW(t) in
a log-log representation.

FIG. 3. We sketch the first-passage-time distributionW(t) as a
function of t. In the limit t→0, W(t) vanishes exponentially; abou
the finite-time singularityW(t) exhibits a maximum. At intermedi-
ate times forgt!1 the distribution exhibits a power law behavio
with scaling exponent~3/2!1~l/2D!. In the long time limit forgt
@1 an exponential falloff with time constantg~11l/D! character-
izes the behavior ofW(t).
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In this paper we have extended the model discusse
Ref. @15# to include a linear damping term. Not surprisingl
the damping changes the long time behavior of the ph
cally relevant first-passage-time distribution. The finite-tim
singularity occurring at timet0 in the noiseless case is sti
effectively resolved by the noise, becoming a random ev
but the power law scaling behavior with scaling expone
a5~3/2!1~l/2D! is limited to early times compared with th
cross-over time 1/g set by the damping constant. In the lon
time limit beyond 1/g the damping gives rise to an expone
tial falloff and the scaling property ceases to be valid.
the extent that the present simple model might apply
physical phenomena where damping is always present,
must conclude that an eventual power law scaling pres
ably is confined to a time window determined by the size
the damping.
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APPENDIX A: EXACT SOLUTION
OF THE FOKKER-PLANCK EQUATION

In this appendix we discuss the exact solution of t
Fokker-Planck equation in more detail. Denoting the norm
ized eigenfunction ofH in Eq. ~4.4! and the associated e
genvalues byCn andD2En/2, respectively, we obtain, incor
porating the initial conditionP(x,0)5d(x2x0) and the
gauge transformation, the following expression for the dis
bution:

P~x,t !5(
n

e2DEnt/2e2g(x22x0
2)/2D~x/x0!2l/2D

3Cn~x!Cn* ~x0!. ~A1!

By means of the transformationC(x)5x11l/2Dexp
2gx2/2DG(gx2/D), it follows that G is a solution of the
degenerate hypergeometric equation@39,40#. For the discrete
spectrum we choose the polynomial form and further ana

FIG. 4. In this figure we sketch the behavior ofW(t) in a log-
log plot. At intermediate times earlier than 1/g we have scaling
behavior with exponent~3/2!1~l/2D!, corresponding to a constan
negative slope. In the long time limit the curve dips down indicati
the cross over to exponential behavior.
5-6
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sis shows that the eigenfunctionsCn are given in terms of
the Laguerre polynomialsLn

a @39,40#. For the normalized
eigenfunctions we thus obtain

Cn5F2S g

D D (3/2)1(l/2D) G~n11!

G@~3/2!1~l/2D!1n#G
1/2

3x11l/2De2gx2/2DLn
(1/2)1(l/2D)~gx2/D!, ~A2!

with discrete eigenvalue spectrum

En54ng/D12~g/D!~11l/D!. ~A3!

Inserting Eqs.~A2! and~A3! in Eq. ~A1! and using the iden-
tity @39,40#

(
n50

`
n!

G~n1a11!
znLn

a~x!Ln
a~y!

5
~xyz!2a/2

12z
e2z(x1y)(12z)I a@2~xyz!1/2/~12z!#, ~A4!

we finally obtain Eq.~4.11! for P(x,t) and by the same
analysis as in Ref.@15# the expression~4.12! for W(t).

We note that forl→0, using I 1/2(x)5(2/px)1/2sinhx
@39#, the expression~4.11! takes the form

P~x,t !5F g

pD~12e22gt!
G 1/2FexpS 2

g

D

~x2x0e2gt!2

12e22gt D
2expS 2

g

D

~x1x0e2gt!2

12e22gt D G , ~A5!

i.e., the mirror case of the noise driven overdamped osc
tor. Note that forD→0, the variablex lies on the noiseless
orbit x→x0exp(2gt) andP vanishes forx50.

APPENDIX B: SMALL NOISE LIMIT-SADDLE
POINT ANALYSIS

In this appendix we perform for completion, a weak no
saddle point analysis of the exact expression in Eq.~4.11!
along the same lines as in Ref.@15#. This analysis requires
that we consider both large order and argument of the Be
function I n(x). This is easily done by Laplace’s method u
ing a convenient spectral representation@39,40#
-

Sh

Re

05110
-

el

I n~z!5
~z/2!n

G~n11/2!G~1/2!
E

0

p

cosh~x cosu!sin2nudu.

~B1!

Inserting Eq.~B1! in Eq. ~4.11! we have

P~x,t !5
1

4pA2

1

x̃0

l

D
el/2DS g x̃0

2

l sinhgt D
(1/2)1(l/2D)

3e2(l/4D)( x̃21 x̃0
2)/( x̃x̃0sinhu)egt/2

3E
0

p

du
sinu

sinhu
~e(l/D)[ ln sin u1(1/2)cosu/sinhu]

1e(l/D)[ ln sin u2(1/2)cosu/sinhu] !, ~B2!

where u is defined by sinhu5l sinhgt/(2gx̃x̃0), x̃
5x exp(gt/2), and x̃05x0exp(2gt/2). Setting f 6(u)
5 ln sinu6(1/2)cosu/sinhu the saddle points for smallD are
given by cosu656exp(2u) for x.0 and cosu657exp(u)
for x,0. For x.0 we havef 1(u1)5 f 2(u2)5(1/2)@ ln(1
2e22u)1eu/sinhu# and f 19 (u1)5 f 29 (u2)52cothu, and we
obtain the weak noise result forx.0

P~x,t !5S l

4pD D 1/2egt/2

x̃0
S g x̃0

2~12e22u!

l sinhgt D (1/2)1(l/2D)

3
e2(l/2D)( x̃21 x̃0

2
22x̃x̃0coshu)/ x̃x̃0sinhu

~sinhu coshu!1/2
. ~B3!

For D→0 the factorx̃21 x̃0
222x̃x̃0coshu in the exponent in

Eq. ~B3! locks onto zero, thus settingx̃21 x̃0
222x̃x̃0coshu

50 and inserting sinhu5l sinh(gt)/2g x̃x̃0 we obtain

x̃21 x̃0
22@~2x̃x̃0!21~l sinhgt/g!2#1/250. ~B4!

Finally, settingx̃5x exp(gt/2) andx̃05x0exp(2gt/2) we ob-
tain after some reduction

x~ t !5Ax0
2exp~22gt !2~l/2g!@12exp~22gt !#,

~B5!

which by simple inspection is equivalent to Eq.~2.3!. For
g→0 we havex5Ax0

22lt; for l→0, x5x0e2gt.
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